fit-on connection - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

fit-on connection - traduzione in russo

LINEAR CONNECTION ON A VECTOR BUNDLE
Koszul connection; Vector bundle connection; Connection on a vector bundle
  • A section of a bundle may be viewed as a generalized function from the base into the fibers of the vector bundle. This can be visualized by the graph of the section, as in the figure above.
  • How to recover the covariant derivative of a connection from its parallel transport. The values <math>s(\gamma(t))</math> of a section <math>s\in \Gamma(E)</math> are parallel transported along the path <math>\gamma</math> back to <math>\gamma(0)=x</math>, and then the covariant derivative is taken in the fixed vector space, the fibre <math>E_x</math> over <math>x</math>.

fit-on connection      

строительное дело

надвижное соединение (воздуховодов круглого сечения)

fit-on connection      
надвижное соединение (воздуховодов круглого сечения)
interference fit         
FASTENING ACHIEVED BY FRICTION AFTER TWO PARTS ARE PUSHED TOGETHER
Press fit; Press-fitting; Press fitting; Force fit; Friction fit

общая лексика

посадка с натягом

Definizione

СТОК-ОН-ТРЕНТ
(Stoke-on-Trent) , город в Великобритании, Англия, на р. Трент. 247 тыс. жителей (1990). Транспортный узел. Центр "гончарного района" (4/5 производства фарфоро-фаянсовых изделий в стране). Металлургическая, лакокрасочная, шинная промышленность.

Wikipedia

Connection (vector bundle)

In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.

Linear connections are also called Koszul connections after Jean-Louis Koszul, who gave an algebraic framework for describing them (Koszul 1950).

This article defines the connection on a vector bundle using a common mathematical notation which de-emphasizes coordinates. However, other notations are also regularly used: in general relativity, vector bundle computations are usually written using indexed tensors; in gauge theory, the endomorphisms of the vector space fibers are emphasized. The different notations are equivalent, as discussed in the article on metric connections (the comments made there apply to all vector bundles).

Traduzione di &#39fit-on connection&#39 in Russo